DRACUNCULUS MEDINENSIS

Dracunculus medinensis, commonly known as “guinea worm,” belongs to the phylum Nematoda and is the only nematode associated with significant transmission by drinking-water. The eradication of guinea worm infection from the world by 1995 was a target of the International Drinking Water Supply and Sanitation Decade (1981–1990), and the World Health Assembly formally committed itself to this goal in 1991. The Dracunculus Eradication Programme has achieved a massive reduction in the number of cases. There were an estimated 3.3 million cases in 1986, 625,000 cases in 1990 and fewer than 60,000 cases in 2002, with the majority occurring in Sudan. Dracunculiasis is restricted to a central belt of countries in sub-Saharan Africa.

General description
The *D. medinensis* worms inhabit the cutaneous and subcutaneous tissues of infected individuals, the female reaching a length of up to 700mm, and the male 25mm. When the female is ready to discharge larvae (embryos), its anterior end emerges from a blister or ulcer, usually on the foot or lower limb, and releases large numbers of rhabditiform larvae when the affected part of the body is immersed in water. The larvae can move about in water for approximately 3 days and during that time can be ingested by many species of *Cyclops* (cyclopoid Copepoda, Crustacea). The larvae penetrate into the haemocoelom, moult twice and are infective to a new host in about 2 weeks. If the *Cyclops* (0.5–2.0mm) are swallowed in drinking-water, the larvae are released in the stomach, penetrate the intestinal and peritoneal walls and inhabit the subcutaneous tissues.

Human health effects
The onset of symptoms occurs just prior to the local eruption of the worm. The early manifestations of urticaria, erythema, dyspnoea, vomiting, pruritus and giddiness are of an allergic nature. In about 50% of cases, the whole worm is extruded in a few weeks; the lesion then heals rapidly, and disability is of limited duration. In the remaining cases, however, complications ensue, and the track of the worm becomes secondarily infected, leading to a severe inflammatory reaction that may result in abscess formation with disabling pain that lasts for months. Mortality is extremely rare, but permanent disability can result from contractures of tendons and chronic arthritis. The economic impact can be substantial. One study reported an 11% annual reduction in rice production from an area of eastern Nigeria, at a cost of US$20 million.

Source and occurrence
Infection with guinea worm is geographically limited to a central belt of countries in sub-Saharan Africa. Drinking-water containing infected *Cyclops* is the only source of infection with *Dracunculus*. The disease typically occurs in rural areas where piped water supplies are not available. Transmission tends to be highly seasonal, depending on changes in water sources. For instance, transmission is highest in the early rainy season in a dry savannah zone of Mali with under 800mm annual rainfall but in the dry season in the humid savannah area of southern Nigeria with over 1300mm annual rainfall. The eradication strategy combines a variety of interventions, including integrated surveillance systems, intensified case containment measures, provision of safe water and health education.

Routes of exposure
The only route of exposure is the consumption of drinking-water containing *Cyclops* spp. carrying infectious *Dracunculus* larvae.

Significance in drinking-water
Dracunculus medinensis is the only human parasite that may be eradicated in the near future by the provision of safe drinking-water. Infection can be prevented by a number of relatively simple control measures. These include intervention strategies to prevent the release of *D. medinensis* larvae from female worms in infected patients into water and control of *Cyclops* spp. in water resources by means of mesh cloth to remove *Cyclops* spp. or inactivation of *Cyclops* spp. in drinking-water by treatment with chlorine.
Selected bibliography