MYCOBACTERIUM

General description
The tuberculous or “typical” species of *Mycobacterium*, such as *M. tuberculosis*, *M. bovis*, *M. africanum* and *M. leprae*, have only human or animal reservoirs and are not transmitted by water. In contrast, the non-tuberculous or “atypical” species of *Mycobacterium* are natural inhabitants of a variety of water environments. These aerobic, rod-shaped and acid-fast bacteria grow slowly in suitable water environments and on culture media. Typical examples include the species *M. gordonae*, *M. kansasii*, *M. marinum*, *M. scrofulaceum*, *M. xenopi*, *M. intracellulare* and *M. avium* and the more rapid growers *M. chelonae* and *M. fortuitum*. The term *M. avium* complex has been used to describe a group of pathogenic species including *M. avium* and *M. intracellulare*. However, other atypical mycobacteria are also pathogenic. A distinct feature of all *Mycobacterium* spp. is a cell wall with high lipid content, which is used in identification of the organisms using acid-fast staining.

Human health effects
Atypical *Mycobacterium* spp. can cause a range of diseases involving the skeleton, lymph nodes, skin and soft tissues, as well as the respiratory, gastrointestinal and genitourinary tracts. Manifestations include pulmonary disease, Buruli ulcer, osteomyelitis and septic arthritis in people with no known predisposing factors. These bacteria are a major cause of disseminated infections in immunocompromised patients and are a common cause of death in HIV-positive persons.

Source and occurrence
Atypical *Mycobacterium* spp. multiply in a variety of suitable water environments, notably biofilms. One of the most commonly occurring species is *M. gordonae*. Other species have also been isolated from water, including *M. avium*, *M. intracellulare*, *M. kansasii*, *M. fortuitum* and *M. chelonae*. High numbers of atypical *Mycobacterium* spp. may occur in distribution systems after events that dislodge biofilms, such as flushing or flow reversals. They are relatively resistant to treatment and disinfection and have been detected in well operated and maintained drinking-water supplies with HPC less than 500/ml and total chlorine residuals of up to 2.8 mg/litre. The growth of these organisms in biofilms reduces the effectiveness of disinfection. In one survey, the organisms were detected in 54% of ice and 35% of public drinking-water samples.

Routes of exposure
Principal routes of infection appear to be inhalation, contact and ingestion of contaminated water. Infections by various species have been associated with their presence in drinking-water supplies. In 1968, an endemic of *M. kansasii* infections was associated with the presence of the organisms in the drinking-water supply, and the spread of the organisms was associated with aerosols from showerheads. In Rotterdam, Netherlands, an investigation into the frequent isolation of *M. kansasii* from clinical specimens revealed the presence of the same strains, confirmed by phage type and weak nitrase activity, in tap water. An increase in numbers of infections by the *M. avium* complex in Massachusetts, USA, has also been attributed to their incidence in drinking-water. In all these cases, there is only circumstantial evidence of a causal relationship between the occurrence of the bacteria in drinking-water and human disease. Infections have been linked to contaminated water in spas.

Significance in drinking-water
Detections of atypical mycobacteria in drinking-water and the identified routes of transmission suggest that drinking-water supplies are a plausible source of infection. There are limited data on the effectiveness of control measures that could be applied to reduce the potential risk from these organisms. One study showed that a water treatment plant could achieve a 99% reduction in numbers of mycobacteria from raw water. Atypical mycobacteria are relatively resistant to disinfection. Persistent residual disinfectant should reduce numbers of mycobacteria in the water column but is unlikely to be effective against organisms present in biofilms. Control measures that are designed to minimize biofilm growth, including treatment to optimize organic carbon removal, restriction of the residence time of water in distribution systems and maintenance of disinfectant residuals, could result in less growth of these organisms. Mycobacteria are not detected by HPC techniques, and *E. coli* (or, alternatively, thermotolerant coliforms) is not a suitable index for the presence/absence of this organism.
Selected bibliography

